全黄H全肉边做边吃奶视频动漫,久久综合九色综合97_久久久,中文字幕乱码人妻一区二区三区,国产边做边吃奶AⅤ视频免费,国产麻豆乱视频AV,轻点灬大JI巴太粗太长了,欧美极品少妇XXXXⅩ视频

創(chuàng)澤機(jī)器人
CHUANGZE ROBOT
當(dāng)前位置:首頁(yè) > 新聞資訊 > 機(jī)器人知識(shí) > 深度解析大規(guī)模參數(shù)語(yǔ)言模型Megatron-BERT

深度解析大規(guī)模參數(shù)語(yǔ)言模型Megatron-BERT

來(lái)源:智東西     編輯:創(chuàng)澤   時(shí)間:2020/6/18   主題:其他 [加盟]
大家好,我是NVIDIA解決方案架構(gòu)師王閃閃。今天主要和大家分享兩個(gè)部分的內(nèi)容:

1.  BERT模型深度解析

2.  大規(guī)模參數(shù)的語(yǔ)言模型Megatron-BERT

我們今天主要是溫故知新我先帶大家復(fù)習(xí)一下BERT模型的整體架構(gòu),內(nèi)容不會(huì)特別偏數(shù)學(xué),主要把BERT一些要點(diǎn)給大家說(shuō)清楚,包括BERT的輸入/輸出以及具體它是怎么工作的,然后介紹NVIDIA基于BERT開(kāi)發(fā)出的一系列好的模型。

首先介紹一下自然語(yǔ)言處理常見(jiàn)的應(yīng)用方向,第一類(lèi)是序列標(biāo)注,比如命名實(shí)體的識(shí)別、語(yǔ)義標(biāo)注、詞性標(biāo)注,循環(huán)智能也是用了序列標(biāo)注。第二類(lèi)是分類(lèi)任務(wù),如文本分類(lèi)和情感分析,這個(gè)方向目前在量化金融領(lǐng)域,尤其是對(duì)沖基金上應(yīng)用性很強(qiáng),尤其是情感分析。我記得3、4年前,有一條新聞?wù)f斯坦福大學(xué)的一個(gè)碩士生,暑期在他的宿舍里用幾塊GPU卡,自己搭建了一個(gè)小的超級(jí)計(jì)算機(jī),他把Twitter上的信息全部錄下來(lái),每天更新。他使用了BERT進(jìn)行情感分析,把每天每個(gè)人的信息分成三類(lèi):positive積極、neutral中性、negative消極。他把三類(lèi)情感的量化信息和當(dāng)天納斯達(dá)克股票的升跌情況匯總,進(jìn)行了統(tǒng)計(jì)分析,發(fā)現(xiàn)如果Twitter上的信息大部分都是積極的,那么股票就有很大的概率會(huì)上漲。我們現(xiàn)在把這類(lèi)數(shù)據(jù)叫做情感分析因子,它在股票分析上是一個(gè)特別重要的推進(jìn)方向,能讓模型越發(fā)準(zhǔn)確。第三類(lèi)NLP應(yīng)用方向就是對(duì)句子關(guān)系的判斷,如自然語(yǔ)言的推理、問(wèn)答系統(tǒng),還有文本語(yǔ)義相似性的判斷。最后一類(lèi),是生成式任務(wù),如機(jī)器翻譯、文本摘要,還有創(chuàng)造型的任務(wù)比如機(jī)器寫(xiě)詩(shī)、造句等。

BERT模型深度解析

現(xiàn)在我們進(jìn)入正題:對(duì)BERT的講解。要了解BERT,首先我們要說(shuō)一下Transformer,因?yàn)锽ERT最主要就是基于Transformer和注意力機(jī)制,這兩點(diǎn)也是BERT能從GPT、RNN、LSTM等一系列架構(gòu)中能脫穎而出的很大原因。Attention,專(zhuān)業(yè)的叫法是Attention Mechanism,Attention是一個(gè)Encoder+Decoder的模型機(jī)制。Encoder-Decoder模型是在深度學(xué)習(xí)中比較常見(jiàn)的模型結(jié)構(gòu):在計(jì)算機(jī)視覺(jué)中這個(gè)模型的應(yīng)用是CNN+RNN的編輯碼框架;在神經(jīng)網(wǎng)絡(luò)機(jī)器翻譯的應(yīng)用是sequence to sequence模型,也就是seq2seq。而編碼(Encoder)就是將序列編碼成一個(gè)固定長(zhǎng)度的向量,解碼(Decoder)就是將之前生成的向量再還原成序列。

那么問(wèn)題來(lái)了,為什么要在Encoder-Decoder模型機(jī)制中引入Attention呢?因?yàn)?Encoder-Decoder模型有兩個(gè)比較顯著的弊端:

一是Encoder會(huì)把序列信息壓縮成一個(gè)固定長(zhǎng)度的向量,那么在Encoder的輸出中,我們暫且把它叫做語(yǔ)義編碼c,c就有可能無(wú)法完全地表示出全部序列的信息,尤其是當(dāng)信息特別長(zhǎng)時(shí)。

二是先輸入到網(wǎng)絡(luò)中的信息會(huì)被后輸入的信息覆蓋掉,輸入的信息越長(zhǎng),對(duì)先前輸入信息的遺忘程度就越大。因?yàn)檫@兩個(gè)弊端,Decoder在解碼的一開(kāi)始就沒(méi)有獲得一個(gè)相對(duì)完整的信息,也就是語(yǔ)義編碼c沒(méi)有一個(gè)相對(duì)完整的信息輸入,那么它解碼的效果自然就不好。有的同學(xué)可能會(huì)說(shuō)想要解決RNN記憶力差的問(wèn)題,可以考慮用LSTM。我們的確可以考慮LSTM,但LSTM對(duì)超長(zhǎng)距離的信息記憶,效果也不是很好。

我們?cè)賮?lái)看看Attention為什么能夠解決這個(gè)問(wèn)題。Attention,顧名思義是注意力。它是模仿人類(lèi)的注意力,人類(lèi)在處理一個(gè)問(wèn)題時(shí)會(huì)把注意力放到那個(gè)特別重要的地方,比如我們?cè)诙虝r(shí)間內(nèi)去看一張照片,第一眼落到照片上的位置可能是某個(gè)建筑物或者是某個(gè)人,這取決于我們不同的目的和興趣等。我們不會(huì)在短時(shí)間之內(nèi)記清楚甚至是看清楚照片上的全部細(xì)節(jié),但是我們會(huì)將注意力聚焦在某個(gè)特定的細(xì)節(jié)上并記住它。Attention模型最終輸出結(jié)果也是能夠達(dá)到這么一個(gè)效果。 

Attention的機(jī)制最早也是應(yīng)用在計(jì)算機(jī)視覺(jué)上面,然后是在自然語(yǔ)言處理上面發(fā)揚(yáng)光大。由于2018年在GPT模型上的效果非常顯著,所以Attention和 Transformer才會(huì)成為大家比較關(guān)注的焦點(diǎn)。之所以Attention的能力在NLP領(lǐng)域得到了徹底釋放,是因?yàn)樗鉀Q了RNN不能并行計(jì)算的弊端,Attention使其每一步的計(jì)算不依賴(lài)于上一步的計(jì)算,達(dá)到和CNN一樣的并行處理效果。并且由于Attention只關(guān)注部分的信息,所以它的參數(shù)較少,速度就會(huì)快。其次RNN記憶能力較差,所以大家一開(kāi)始想到的解決方式都是用LSTM和GRU(Gated Recurrent Unit)來(lái)解決長(zhǎng)距離信息記憶的問(wèn)題,但是都沒(méi)有起到很好的效果。Attention由于只關(guān)注長(zhǎng)文本中的一個(gè)小部分,可以準(zhǔn)確地識(shí)別出關(guān)鍵信息,所以取得了特別不錯(cuò)的效果。

下面我們來(lái)說(shuō)一下Attention是怎么實(shí)現(xiàn)的聚焦。主要是因?yàn)樗遣捎昧穗p向的RNN,能夠同時(shí)處理每個(gè)單詞前后的信息。在Decoder中,它首先計(jì)算每一個(gè)Encoder在編碼隱藏層的狀態(tài),然后會(huì)和Decoder隱藏層狀態(tài)比較,做出相關(guān)程度的評(píng)定。得到的權(quán)值會(huì)通過(guò)softmax歸一化得到使用的權(quán)重,也就是我們前面所說(shuō)的編碼向量c。然后對(duì)Encoder中對(duì)應(yīng)的不同狀態(tài)的權(quán)重進(jìn)行加權(quán)求和,有了編碼c之后,我們就可以先計(jì)算Decoder隱藏層的狀態(tài),然后再計(jì)算Decoder的輸出。這就是一個(gè)比較完整的在BERT當(dāng)中運(yùn)用Attention以及Encoder-Decoder模型的使用案例。Attention根據(jù)計(jì)算區(qū)域、權(quán)值的計(jì)算方式等會(huì)有很多不同變種。

不止是在NLP領(lǐng)域,在其他很多領(lǐng)域中,Transformer的模型由于很好用都是大家首選的,主要的一個(gè)運(yùn)用機(jī)制就是Attention。我們之后會(huì)說(shuō)到的Transformer模型會(huì)用到 Multi-head Attention和Self-Attention。首先說(shuō)一下Self-Attention,Self-Attention是將原文中每個(gè)詞和該句子中所有單詞之間進(jìn)行注意力的計(jì)算,主要是為了尋找原文內(nèi)部的關(guān)系。對(duì)應(yīng)到閱讀理解任務(wù),這個(gè)模型就可以判定一篇文章中的兩段話(huà)是不是同一個(gè)意思。Multi-head Attention,則是對(duì)一段原文使用多次的注意力,每次會(huì)關(guān)注到原文的不同部分,相當(dāng)于多次地在單層中使用Attention,然后把結(jié)果給拼接起來(lái)。 







自然語(yǔ)言處理技術(shù)五大技術(shù)進(jìn)展和四大應(yīng)用與產(chǎn)品

自然語(yǔ)言處理技術(shù)的應(yīng)用和研究領(lǐng)域發(fā)生了許多有意義的標(biāo)志性事件,技術(shù)進(jìn)展方面主要體現(xiàn)在預(yù)訓(xùn)練語(yǔ)言模型、跨語(yǔ)言 NLP/無(wú)監(jiān)督機(jī)器翻譯、知識(shí)圖譜發(fā)展 + 對(duì)話(huà)技術(shù)融合、智能人機(jī)交互、平臺(tái)廠(chǎng)商整合AI產(chǎn)品線(xiàn)

自然語(yǔ)言處理技術(shù)發(fā)展趨勢(shì)進(jìn)一步推動(dòng)人工智能從感知智能向認(rèn)知智能的演進(jìn)

下一個(gè)十年,智能人機(jī)交互、多模態(tài)融合、結(jié)合領(lǐng)域需求的 NLP 解決方案建設(shè)、知識(shí)圖譜結(jié)合落地場(chǎng)景等將會(huì)有突破性變化

中國(guó)移動(dòng)室內(nèi)定位白皮書(shū)

中國(guó)移動(dòng)聯(lián)合產(chǎn)業(yè)合作伙伴發(fā)布《室內(nèi)定位白皮書(shū)》,對(duì)室內(nèi)定位產(chǎn)業(yè)發(fā)展現(xiàn)狀及面臨的挑戰(zhàn),深入分析了垂直行業(yè)的室內(nèi)定位需求,并詳細(xì)闡述了實(shí)現(xiàn)室內(nèi)定位的技術(shù)原理, 及室內(nèi)定位評(píng)測(cè)體系

傳感器面臨時(shí)代新機(jī)遇,未來(lái)發(fā)展將呈現(xiàn)哪些趨勢(shì)

機(jī)器人、無(wú)人機(jī)、自動(dòng)駕駛汽車(chē)等加快落地,智慧城市深入建設(shè),更是為傳感器產(chǎn)業(yè)帶來(lái)了難以估量的龐大機(jī)遇

仿人操作機(jī)器人Cosero配備7自由度機(jī)械臂裝有Kinect相機(jī)實(shí)現(xiàn)對(duì)目標(biāo)環(huán)境的3D感知

Cosero是德國(guó)波恩大學(xué)的Sven Behnke團(tuán)隊(duì)根據(jù)家庭環(huán)境中的日常操作任務(wù)而研制的一款仿人操作機(jī)器人基于深度學(xué)習(xí)方法的目標(biāo)姿態(tài)估計(jì)和RGB-D SLAM等感知測(cè)量

移動(dòng)式操作機(jī)器人平臺(tái)Personal Robot 2可模擬開(kāi)門(mén)、打臺(tái)球和畫(huà)畫(huà)

機(jī)器人的學(xué)習(xí)分為三個(gè)部分的軌跡預(yù)測(cè)包括示教者的手部運(yùn)動(dòng)軌跡、示教者的身體移動(dòng)軌跡以及被操作物體的運(yùn)動(dòng)軌跡

Jupiter由四輪獨(dú)立轉(zhuǎn)向的底盤(pán)和UR5機(jī)械臂組成通過(guò)SSD網(wǎng)絡(luò)檢測(cè)目標(biāo)物體

通過(guò)2D激光雷達(dá)信息采用Hector SLAM實(shí)現(xiàn)機(jī)器人對(duì)地圖的感知和自主導(dǎo)航規(guī)劃,通過(guò)頂部的RGB-D相機(jī)采集目標(biāo)物體深度和RGB圖像信息

野外自主農(nóng)作物探測(cè)機(jī)器人Robotanist使用擴(kuò)展卡爾曼濾波器(EKF)方法融合MTI等傳感器信息

驅(qū)動(dòng)系統(tǒng)由4個(gè)200W無(wú)刷直流電機(jī)構(gòu)成,通過(guò)50:1的空心軸減速機(jī)可以最高達(dá)2m/s的速度在玉米、高粱等農(nóng)作物的地里前進(jìn)

視頻搜索太難了!阿里文娛多模態(tài)搜索算法實(shí)踐

視頻搜索是涉及信息檢索、自然語(yǔ)言處理(NLP)、機(jī)器學(xué)習(xí)、計(jì)算機(jī)視覺(jué)(CV)等多領(lǐng)域的綜合應(yīng)用場(chǎng)景

淺談服務(wù)機(jī)器人的潛在危險(xiǎn)

服務(wù)機(jī)器人潛在危險(xiǎn)有:電擊、與能量有關(guān)的危險(xiǎn)、著火、與熱有關(guān)的危險(xiǎn)、機(jī)械危險(xiǎn)、輻射、化學(xué)危險(xiǎn)等

個(gè)性化的人機(jī)交互

HRI的MTL可以使機(jī)器人更輕松,更智能地與新用戶(hù)進(jìn)行交互,即使使用諸如RL這樣的數(shù)據(jù)密集型方法,也可以避免社交交互失敗的不利影響。MTL和多模態(tài)ML已用于自動(dòng)識(shí)別自閉癥譜系障礙(ASD)兒童

優(yōu)必選專(zhuān)家丁宏鈺深入講解大型仿人機(jī)器人整機(jī)構(gòu)型

從大型仿人機(jī)器人整機(jī)構(gòu)型國(guó)內(nèi)外研究現(xiàn)狀入手,圍繞機(jī)器人整機(jī)構(gòu)型、關(guān)節(jié)運(yùn)動(dòng)特點(diǎn)、伺服驅(qū)動(dòng)器、減速器、仿真平臺(tái)等方面進(jìn)行深度講解,最后就大型仿人機(jī)器人整機(jī)構(gòu)型未來(lái)發(fā)展趨勢(shì)給出自己的見(jiàn)解
資料獲取
機(jī)器人知識(shí)
== 最新資訊 ==
ChatGPT:又一個(gè)“人形機(jī)器人”主題
ChatGPT快速流行,重構(gòu) AI 商業(yè)
中國(guó)機(jī)器視覺(jué)產(chǎn)業(yè)方面的政策
中國(guó)機(jī)器視覺(jué)產(chǎn)業(yè)聚焦于中國(guó)東部沿海地區(qū)(
從CHAT-GPT到生成式AI:人工智能
工信部等十七部門(mén)印發(fā)《機(jī)器人+應(yīng)用行動(dòng)實(shí)
全球人工智能企業(yè)市值/估值 TOP20
創(chuàng)澤智能機(jī)器人集團(tuán)股份有限公司第十一期上
諧波減速器和RV減速器比較
機(jī)器人減速器:諧波減速器和RV減速器
人形機(jī)器人技術(shù)難點(diǎn) 高精尖技術(shù)的綜合
機(jī)器人大規(guī)模商用面臨的痛點(diǎn)有四個(gè)方面
青島市機(jī)器人產(chǎn)業(yè)概況:機(jī)器人企業(yè)多布局在
六大機(jī)器人產(chǎn)業(yè)集群的特點(diǎn)
機(jī)械臂-高度非線(xiàn)性強(qiáng)耦合的復(fù)雜系統(tǒng)
== 機(jī)器人推薦 ==
迎賓講解服務(wù)機(jī)器人

服務(wù)機(jī)器人(迎賓、講解、導(dǎo)診...)

智能消毒機(jī)器人

智能消毒機(jī)器人

機(jī)器人開(kāi)發(fā)平臺(tái)

機(jī)器人開(kāi)發(fā)平臺(tái)


機(jī)器人招商 Disinfection Robot 機(jī)器人公司 機(jī)器人應(yīng)用 智能醫(yī)療 物聯(lián)網(wǎng) 機(jī)器人排名 機(jī)器人企業(yè) 機(jī)器人政策 教育機(jī)器人 迎賓機(jī)器人 機(jī)器人開(kāi)發(fā) 獨(dú)角獸 消毒機(jī)器人品牌 消毒機(jī)器人 合理用藥 地圖
版權(quán)所有 創(chuàng)澤智能機(jī)器人集團(tuán)股份有限公司 中國(guó)運(yùn)營(yíng)中心:北京 清華科技園九號(hào)樓5層 中國(guó)生產(chǎn)中心:山東日照太原路71號(hào)
銷(xiāo)售1:4006-935-088 銷(xiāo)售2:4006-937-088 客服電話(huà): 4008-128-728

招远市| 镇巴县| 句容市| 双桥区| 左贡县| 大安市| 霍邱县| 长宁区| 锦屏县| 大港区| 陆川县| 孟村| 淄博市| 遂宁市| 涪陵区| 宜兰县| 高雄县| 铜山县| 淮北市| 买车| 五台县| 贺州市| 天长市| 彰武县| 临朐县| 柳林县| 梅州市| 松潘县| 岳西县| 赤峰市| 和林格尔县| 安溪县| 香港 | 叙永县| 昆山市| 博湖县| 大名县| 河北省| 鹤壁市| 老河口市| 子长县|