近幾年,騰訊優(yōu)圖不斷迭代數(shù)據(jù)和模型缺陷情況下神經(jīng)網(wǎng)絡的有效訓練方法,相關技術已經(jīng)在眾多業(yè)務場景上(行人重識別,內容審核等)落地。本文整理自騰訊優(yōu)圖、騰訊云大學、AICUG和AI科技評論聯(lián)合主辦的「優(yōu)Tech沙龍」,分享嘉賓為騰訊優(yōu)圖實驗室高級研究員Louis。
01 定義帶噪學習目標
現(xiàn)實數(shù)據(jù)中存在的標簽噪音(label noise)根據(jù)Feature可以分成兩種:Feature independent noise和 Feature dependent noise。Feature independent noise是與特征無關的,比如將一只狗的圖片誤標記成汽車,狗和汽車沒有什么相似特征,所以屬于這類。Feature independent noise是與特征有關的,比如說狗和狼具有很多相似特征屬性,標注人員可能把狗誤標記成狼,那就屬于這類。其實現(xiàn)實場景更多存在都是feature dependent noise。
噪音普遍存在,所以我們需要訓練神經(jīng)網(wǎng)絡進行帶噪學習,并且要能實現(xiàn)比較好的性能。那么noise label learning的目標是設計一個loss function,使得在noisy labels下訓練得到的解,在性能上接近在clean labels下訓練得到的解。
商用機器人 Disinfection Robot 展廳機器人 智能垃圾站 輪式機器人底盤 迎賓機器人 移動機器人底盤 講解機器人 紫外線消毒機器人 大屏機器人 霧化消毒機器人 服務機器人底盤 智能送餐機器人 霧化消毒機 機器人OEM代工廠 消毒機器人排名 智能配送機器人 圖書館機器人 導引機器人 移動消毒機器人 導診機器人 迎賓接待機器人 前臺機器人 導覽機器人 酒店送物機器人 云跡科技潤機器人 云跡酒店機器人 智能導診機器人 |