全黄H全肉边做边吃奶视频动漫,久久综合九色综合97_久久久,中文字幕乱码人妻一区二区三区,国产边做边吃奶AⅤ视频免费,国产麻豆乱视频AV,轻点灬大JI巴太粗太长了,欧美极品少妇XXXXⅩ视频


首頁
產(chǎn)品系列
行業(yè)應(yīng)用
渠道合作
新聞中心
研究院
投資者關(guān)系
技術(shù)支持
關(guān)于創(chuàng)澤
| En
 
  當(dāng)前位置:首頁 > 新聞資訊 > 機器人知識 > 戴瓊海院士:搭建腦科學(xué)與人工智能的橋梁  
 

戴瓊海院士:搭建腦科學(xué)與人工智能的橋梁

來源:圖靈人工智能      編輯:創(chuàng)澤      時間:2020/5/27      主題:其他   [加盟]

人工智能作為21世紀(jì)最具有影響力的技術(shù),正在包括諸如機器人、語言識別、圖像識別、自然語言處理等諸多領(lǐng)域發(fā)揮著重要作用。腦科學(xué)被譽為“人類科學(xué)最后的前沿”,認(rèn)識腦的奧秘是對人類的終極挑戰(zhàn)。而更重要的是,腦科學(xué)的發(fā)展將推動人工智能科學(xué)從感知人工智能到認(rèn)知人工智能的跨越。

1.科研從失敗做起。

科研的實際過程是充滿失敗的,一系列在無數(shù)次失敗后才成功的故事,啟示我們失敗通往成功的道路是螺旋式的,面對失敗要保持恒心毅力,不斷總結(jié)從失敗中吸取經(jīng)驗。


2.什么是認(rèn)知科學(xué)?

認(rèn)知科學(xué)是一門對心智及其過程進行多學(xué)科研究的科學(xué)。如何對心智及其過程進行準(zhǔn)確而全面的觀察是認(rèn)知科學(xué)的基礎(chǔ),同樣是巨大的挑戰(zhàn)。認(rèn)知科學(xué)包含六大研究領(lǐng)域:心理學(xué),哲學(xué),語言學(xué),人類學(xué),人工智能,神經(jīng)科學(xué)。 


3.腦成像技術(shù)的發(fā)展與困境

以觀察為出發(fā)點,腦成像成為了認(rèn)知科學(xué)的一個重要工具。通過腦成像,可以記錄下腦在認(rèn)知過程中發(fā)生的變化,從而直接揭示認(rèn)知的奧秘。但是由于細(xì)胞間錯綜復(fù)雜的連接關(guān)系,我們不能進一步從微觀、介觀、宏觀層面簡單理解認(rèn)知過程,導(dǎo)致認(rèn)知科學(xué)遇到發(fā)展瓶頸。


4.生命科學(xué)成像儀器RUSH-I的研發(fā)

為了突破現(xiàn)階段腦科學(xué)觀察的瓶頸,大視場、高分辨顯微鏡的研發(fā)是現(xiàn)階段的主要任務(wù)。清華大學(xué)牽頭開發(fā)研制了超寬、超分、超快的顯微鏡儀器生命科學(xué)成像儀器RUSH-I。RUSH-I是多維多尺度高分辨計算攝像儀器,可以全腦尺度下觀察到細(xì)胞運動,為從亞細(xì)胞、細(xì)胞、組織到器官結(jié)構(gòu)與功能活體研究提供了新工具。


5. 光電技術(shù)在人工智能中的機遇與挑戰(zhàn)

現(xiàn)在的人工智能復(fù)雜度急劇攀升、算力需求激增、前算力與能耗大成為人工智能發(fā)展的瓶頸,因此需要尋求光電結(jié)合的方式進行計算。利用光電技術(shù)顛覆傳統(tǒng)計算范式,從而提升算力。再以清華人工智能(T-AI)結(jié)合新一代認(rèn)知智能,實現(xiàn)最后軟硬件結(jié)合完成整個光電智能計算系統(tǒng)。


6. 戴瓊海老師對同學(xué)們的建議

戴瓊海老師也給同學(xué)們分享了做研究的經(jīng)驗和建議,希望同學(xué)們做研究要緊密結(jié)合國際前沿和國家重大需求,做學(xué)問要記住問題驅(qū)使是原創(chuàng),方法驅(qū)使是改進,并且學(xué)會用理科的思維思考問題去攻克方式實踐,更重要是的學(xué)會哲學(xué)表達。


講座實錄

科學(xué)研究從失敗做起

2016年2月11日,愛因斯坦于100年前提出的引力波概念被證實,其是由兩個黑洞的合并過程而產(chǎn)生的強烈的引力波信號。引力波的論證史是一個曲折的過程,愛因斯坦經(jīng)過提出概念、修正概念、遭遇拒稿、發(fā)現(xiàn)并修正論文錯誤等多次失敗之后,才最終將“論引力波”研究成果發(fā)表,而更艱難的引力波的實驗驗證則經(jīng)歷了100余年的歷史。無獨有偶,居里夫人發(fā)現(xiàn)鐳的過程也是極其復(fù)雜的,在連續(xù)工作4年依然一無所獲后,居里夫人發(fā)現(xiàn),也許鐳并不像想象的那樣是一團晶體,而后其發(fā)現(xiàn)器皿中不起眼的污跡便是鐳。所以由此可以看出,失敗是經(jīng)常的,成功只是一瞬間的事情。X射線的發(fā)現(xiàn)同樣是倫琴在多次實驗失敗的基礎(chǔ)上,不斷改進實驗方法在偶然間發(fā)現(xiàn)的,這發(fā)現(xiàn)的過程也少不了倫琴能夠敢于打破舊觀念,提出新概念的創(chuàng)新精神。


這些故事說明,失敗通往成功的道路是螺旋式的,所以同學(xué)們在做研究當(dāng)中會碰到很多失敗,在這當(dāng)中我們一定要有興趣,而往往我們會被失敗打敗,所以我們一定要有恒心有毅力。興趣是暫時的,毅力是永久的,既然選擇某一方向,要學(xué)會在復(fù)雜的問題中找到自己成功的道路。失敗是對追求者的考驗,成功是對追求者的回報。


認(rèn)知科學(xué)概述

1969年,英國人萊特希爾爵士為國會提供報告,全盤否定人工智能的發(fā)展,人工智能陷入寒冬。為了改變?nèi)斯ぶ悄馨l(fā)展窘境,認(rèn)知科學(xué)之父朗格特-希金斯提出了包括人工智能、心理學(xué)、數(shù)學(xué)、人類學(xué)等學(xué)科在內(nèi)的一個綜合學(xué)科概念,稱之為認(rèn)知科學(xué)。按照現(xiàn)代定義,認(rèn)知科學(xué)是一門對心智及其過程進行多學(xué)科研究的科學(xué)。如何對心智及其過程進行準(zhǔn)確而全面的觀察是認(rèn)知科學(xué)的基礎(chǔ),但同樣是巨大的挑戰(zhàn)。認(rèn)知科學(xué)包含六大研究領(lǐng)域:心理學(xué),人類的高級心理過程;哲學(xué),現(xiàn)代科學(xué)的方式與途徑研究思維、意識等;語言學(xué):語言如何與認(rèn)知交互、如何形成思想等;人類學(xué),使用認(rèn)知科學(xué)的研究方法和理論;人工智能,認(rèn)知模型的計算機實現(xiàn);神經(jīng)科學(xué),認(rèn)知的生物學(xué)(神經(jīng)層面)原理。

認(rèn)知科學(xué)是基于假設(shè)完成的,但在認(rèn)知科學(xué)發(fā)展過程中多次出現(xiàn)先前的假設(shè)被后期實驗推翻的情況,這導(dǎo)致大家對認(rèn)知科學(xué)產(chǎn)生了疑惑。而腦成像技術(shù)的發(fā)展則為洞悉大腦的認(rèn)知過程提供了可能。以觀察為出發(fā)點,腦成像成為了認(rèn)知科學(xué)的一個重要工具。通過腦成像,可以記錄下腦在認(rèn)知過程中發(fā)生的變化,從而直接揭示認(rèn)知的奧秘。2012年,馬薩諸塞總醫(yī)院在science發(fā)文,發(fā)現(xiàn)了腦聯(lián)結(jié)的規(guī)律網(wǎng)格結(jié)構(gòu),與電路板陣列類似。此網(wǎng)格結(jié)構(gòu)的發(fā)現(xiàn)讓我們初探了大腦的認(rèn)知過程,同時帶來了新的科學(xué)挑戰(zhàn)。


由于不能準(zhǔn)確觀測細(xì)胞間的網(wǎng)格結(jié)構(gòu)是如何錯綜復(fù)雜進行聯(lián)結(jié)的,導(dǎo)致我們不能在微觀、介觀和宏觀層面理解神經(jīng)細(xì)胞的工作原理、信息處理方式和協(xié)作認(rèn)知機制,這導(dǎo)致腦科學(xué)在2015年左右陷入短暫的低谷。在腦成像觀察時,必須兼顧大腦的微觀細(xì)胞層面、介觀環(huán)路層面與宏觀全腦層面,才能實現(xiàn)對認(rèn)知過程的準(zhǔn)確觀察。這就需要研發(fā)大觀測視場、高觀測分辨率的儀器,進一步了解細(xì)胞與細(xì)胞之間的關(guān)系。


腦科學(xué)—人類最后的科學(xué)

什么是腦科學(xué)

人類大腦重約3磅(1.4公斤),由上千億個神經(jīng)元組成,每個神經(jīng)元又包含1000多個分支,共同構(gòu)成了龐大精細(xì)的神經(jīng)網(wǎng)絡(luò)。它一點都不比無窮宇宙簡單,可以說人類大腦的神經(jīng)科學(xué) (Neuroscience) 是“人類科學(xué)最后的前沿”,認(rèn)識腦的奧秘是對人類的終極挑戰(zhàn)。腦科學(xué)的發(fā)展,對腦疾病的防治、人工智能產(chǎn)業(yè)的發(fā)展有著巨大的推動作用。


腦與全身的關(guān)系主要表現(xiàn)在中樞神經(jīng)系統(tǒng)通過遍布于人體,傳出神經(jīng)信號與器官建立連接,發(fā)揮對組織器官保護機制。而器官通過免疫系統(tǒng)反饋組織狀態(tài),也是腦與全身協(xié)調(diào)的重要表現(xiàn)。


世界各國的腦計劃

世界各國目前正在積極實行腦計劃,其中美國和歐盟起步較早。2013年4月2日,美國時任總統(tǒng)奧巴馬宣布啟動“通過推動創(chuàng)新型神經(jīng)技術(shù)開展大腦研究”計劃;2013年10月,由15個歐洲國家參與發(fā)起歐盟腦計劃,但目前已宣告失敗,并準(zhǔn)備重新開始;2014年,由日本科學(xué)家發(fā)起神經(jīng)科學(xué)研究計劃;2016年2月澳大利亞腦聯(lián)盟正式成立;中國的腦計劃以腦認(rèn)知功能的解析和技術(shù)平臺為一體,形成認(rèn)知障礙相關(guān)重大腦疾病診治和類腦計算與腦機智能技術(shù)為兩翼的“一體兩翼”布局,具體研究布局還在準(zhǔn)備中。當(dāng)前,各個國家圍繞統(tǒng)計大腦細(xì)胞類型、建立大腦結(jié)構(gòu)圖、開發(fā)操作神經(jīng)回路工具、了解神經(jīng)細(xì)胞與個體行為的聯(lián)系四個方面分別開展研究。


根據(jù)視場和分辨率,通過將顯微鏡技術(shù)映射到二維坐標(biāo)系中可劃分為四個部分,現(xiàn)階段的主要工作是攻克大視場、高分辨顯微鏡中的技術(shù)難題,搜尋這些技術(shù)對新一代人工智能的推動作用。清華大學(xué)聯(lián)合浙江大學(xué)、中科院上海光學(xué)精密儀器機械研究所和其他三家單位一起共同研制目標(biāo)是為超寬、超分、超快的顯微鏡儀器。


儀器研制思路創(chuàng)新與矛盾分析

視場和分辨率本身是一對矛盾,視場越大伴隨著分辨率就越低。因此,期望在1 cm2的視場里看到一只鼠的全部腦及其細(xì)胞,如果以傳統(tǒng)方式,通過加工曲面解決視場問題是難以實現(xiàn)的,其加工難度與視場正相關(guān)。另外,面對極大的數(shù)據(jù)量,相機的帶寬、鏈路傳輸?shù)膸挕⒋鎯懭氲膸挾济媾R極大壓力。最后,結(jié)合以前做人工智能所積累的經(jīng)驗(無損信息編碼采集、稀疏集結(jié)構(gòu)學(xué)習(xí)、信息重構(gòu))設(shè)計出適應(yīng)相面彎曲和計算重構(gòu)圖像的新方式來解決此問題。經(jīng)過兩年時間,課題組共同努力研發(fā)出生命科學(xué)成像儀器RUSH-I,實現(xiàn)了拍得快、存得下的效果。


生命科學(xué)成像儀器RUSH-I是多維多尺度高分辨計算攝像儀器,可以全腦尺度下觀察到細(xì)胞運動,比如實時監(jiān)測實驗所用的免疫細(xì)胞運動。并首次對音樂刺激下的清醒小鼠全腦皮層神經(jīng)網(wǎng)絡(luò)活動進行高速成像,展示出小鼠全腦皮層、亞細(xì)胞級、結(jié)構(gòu)與功能統(tǒng)一 。


RUSH-I為從亞細(xì)胞、細(xì)胞、組織到器官結(jié)構(gòu)與功能活體研究提供了新工具,并得到國際上腦科學(xué)家們的廣泛認(rèn)同。利用該儀器所做的相關(guān)工作發(fā)表已經(jīng)發(fā)表在多篇高水平期刊上(如Nature Photonics, Nature Methods, Nature Neuroscience)。


第二代RUSH-I儀器的研制

從2017年開始著手研究,并于2018年1月搭建完成的第二代儀器RUSH-II,具有400 nm分辨率,準(zhǔn)備觀察大鼠和獼猴的腦部。達到的技術(shù)指標(biāo)為,視場大小達到1 cm2;分辨率達到0.4 μm;每幀圖像達到3.36億像素;成像幀率達到30幀/秒;數(shù)據(jù)通量達到100.8億像素/秒,是當(dāng)前國際上視場最大、數(shù)據(jù)通量最高的高分辨率光學(xué)顯微鏡。


當(dāng)前的國際最為流行的四大神經(jīng)網(wǎng)絡(luò)分別為:卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、脈沖神經(jīng)網(wǎng)絡(luò)、圖神經(jīng)網(wǎng)絡(luò)。但如何實現(xiàn)高能效、可解釋、易擴展、具有長短期記憶的新一代認(rèn)知智能成為發(fā)展難題。美國情報系統(tǒng)的Intelligence Advanced Research Projects Activity(IARPA)部門啟動了皮質(zhì)網(wǎng)絡(luò)機器智能MICrONS計劃 (2016),項目經(jīng)費1億美金,被稱為阿波羅腦計劃。其繪制出嚙齒動物1 mm2大腦皮層中的所有神經(jīng)回路(記錄并測量10萬個神經(jīng)元的活動和連接),研究大腦計算方式,并運用這些研究發(fā)現(xiàn)更好地影響機器學(xué)習(xí)和人工智能算法。由哈佛大學(xué)、卡耐基梅隆大學(xué)和貝勒醫(yī)學(xué)院的研究團隊牽頭,對人工智能發(fā)展進行探索。


縱觀人工智能的發(fā)展,經(jīng)歷了從符號主義到聯(lián)結(jié)主義的發(fā)展演變。而自2016年之后,受腦科學(xué)和心理學(xué)等學(xué)科的啟發(fā),人工智能正在向生物智能的轉(zhuǎn)變。因此,下一代人工智能將要實現(xiàn)人工智能從感知決策與控制到認(rèn)知決策與控制的轉(zhuǎn)變。


人工智能的需求與瓶頸

現(xiàn)在的人工智能面臨復(fù)雜度急劇攀升(比當(dāng)前超過30萬倍)、算力需求激增、摩爾定律逐步失效等問題。當(dāng)前,算力與能耗成為人工智能顛覆性發(fā)展的瓶頸。要尋求以光三維傳播來代替硅基的電的一維計算,對材料的要求較高,因此需要尋求光電結(jié)合的方式進行過渡,并且,計算媒介的改變會帶來顛覆性的變化。


發(fā)展光電技術(shù)的歷史機遇

需求與瓶頸:現(xiàn)有存算分離的電子計算范式無法滿足人工智能技術(shù)的發(fā)展需要;

理論與算力:已有光學(xué)神經(jīng)網(wǎng)絡(luò)的理論模型必將推動人工智能算力跨越式發(fā)展;

材料與工藝:當(dāng)前微納光電材料與工藝取得的突破為光電集成研發(fā)提供了條件;


光電技術(shù)引領(lǐng)顛覆性技術(shù)革命

當(dāng)前我們要利用光電技術(shù)顛覆傳統(tǒng)計算范式,研制采存算一體的光電計算系統(tǒng),從而提升算力。對比之下,光電技術(shù)的算例高達1014 MAC/s/cm2,而電子技術(shù)的算力僅為1011 MAC/s/cm2。并且功耗提升也會達到百萬倍之多,光電技術(shù)功耗為4×1012 MAC/J,電子3×106 GMAC/W/s。清華大學(xué)在光電上的研究與麻省理工學(xué)院和劍橋大學(xué)、明斯特大學(xué)并駕齊驅(qū),且我校獨特的衍射神經(jīng)網(wǎng)絡(luò)和其他方案有所不同。


光電智能技術(shù)的路線規(guī)劃與清華方案

從光電技術(shù)出發(fā),以清華人工智能(T-AI)結(jié)合新一代認(rèn)知智能,最后進行軟硬件結(jié)合,建立整個光電智能計算系統(tǒng)。目前,研究中心具有3-5個國家重點實驗室,通過大企業(yè)聯(lián)盟集成攻關(guān)發(fā)揮研發(fā)優(yōu)勢,以滿足國家重大需求、面向國民經(jīng)濟主戰(zhàn)場的原理機樣。


目前,清華大學(xué)腦認(rèn)知院主要集中在突破神經(jīng)環(huán)路動態(tài)成像技術(shù)、揭示神經(jīng)血管的耦合機制、解決腦免疫的百年難題與從腦認(rèn)知到腦聯(lián)網(wǎng)的顛覆性突破四大科學(xué)研究上。當(dāng)下,我們結(jié)合工作基礎(chǔ),制定清華方案,所做的工作主要包括腦觀測、腦健康、腦模擬與腦認(rèn)知,體現(xiàn)學(xué)科之間的交叉融合,實現(xiàn)產(chǎn)學(xué)研創(chuàng)新。


戴瓊海老師對同學(xué)們的建議

論壇最后,戴瓊海老師也給同學(xué)們分享了做研究的經(jīng)驗和建議,希望同學(xué)們做研究要緊密結(jié)合國際前沿和國家重大需求,做學(xué)問要記住問題驅(qū)使是原創(chuàng),方法驅(qū)使是改進,并且學(xué)會用理科的思維思考問題去攻克方式實踐,更重要是的學(xué)會哲學(xué)表達。

研究者可分為三類,分別是牛人、高人和神人,他們分別對應(yīng)著自己的特質(zhì):做一研究做到極致、做別人做不到的事和做別人想不到的事。

同時,要胸懷寬,境界高,眼光遠(yuǎn),不要讓戰(zhàn)術(shù)的勤奮掩蓋了戰(zhàn)略上的懶惰。正如德魯克所述,戰(zhàn)略不是研究我們未來做什么,而是研究我們今天做什么才有未來。


  



“觸控一體化”的新型機械手指尖研究

機械手面臨的難點在于如何在柔性物體上施加可控的擠壓力,以及在非穩(wěn)定狀況下確保精確、穩(wěn)健的抓握與柔性指端操控

微信提出推薦中的深度反饋網(wǎng)絡(luò),在“看一看”數(shù)據(jù)集上達到SOTA

DFN模型綜合使用了用戶的隱式正反饋(點擊行為)、隱式負(fù)反饋(曝光但未點擊的行為)以及顯式負(fù)反饋(點擊不感興趣按鈕行為)等信息

基于腦肌融合的軟體康復(fù)手研究

軟體機械手充分利用和發(fā)揮各種柔性材料的柔順性,及其非線性、粘彈性和遲滯特性等在軟體手運動和控制中潛在的“機械智能”作用,降低控制的復(fù)雜度,實現(xiàn)高靈活性、強適應(yīng)性和良好交互性,在醫(yī)療康復(fù)領(lǐng)域有重要應(yīng)用價值

情感分析技術(shù):讓智能客服更懂人類情感

智能客服系統(tǒng)中人機結(jié)合的服務(wù)形式,從五個維度總結(jié)和介紹情感分析技術(shù)在智能客服系統(tǒng)中的應(yīng)用場景,包括情感分析算法模型的原理及實際落地使用方式和效果分析

AI也會遭遇瓶頸 解析人工智能技術(shù)的存儲性能需求

AI人工智能技術(shù)需要構(gòu)建強有力的IT基礎(chǔ)設(shè)施,人工智能的工作主要由采集、準(zhǔn)備、訓(xùn)練和推理四部分組成,每個部分需要讀寫不同類型的數(shù)據(jù),工作負(fù)載也不盡相同,將給存儲設(shè)備帶來較大的挑戰(zhàn)。

自動化所提出神經(jīng)元群體間側(cè)向交互的卷積脈沖神經(jīng)網(wǎng)絡(luò)模型

基于梯度反向傳播的脈沖神經(jīng)網(wǎng)絡(luò)(SNN)訓(xùn)練方法逐漸興起。在這種訓(xùn)練方法下,SNN能夠在保留神經(jīng)元內(nèi)部動力學(xué)的同時獲得較好的性能

基于激光雷達的SLAM(激光SLAM)研究

Cartographer跨平臺和傳感器配置,MC2SLAM實時激光里程計系統(tǒng),LeGO-LOAM種輕量級和地面優(yōu)化的激光雷達里程計和建圖方法,SUMA++開源的基于語義信息的激光雷達SLAM系統(tǒng)

學(xué)一個忘一個?人工智能遭遇“災(zāi)難性遺忘”,克服“失憶”有何良策

人工智能為什么會產(chǎn)生“災(zāi)難性遺忘”?目前,解決災(zāi)難性遺忘的方案有哪些?難點在哪?來看看專家怎么說
 
資料獲取
新聞資訊
== 資訊 ==
» 人形機器人未來3-5年能夠?qū)崿F(xiàn)產(chǎn)業(yè)化的方
» 導(dǎo)診服務(wù)機器人上崗門診大廳 助力醫(yī)院智慧
» 山東省青島市政府辦公廳發(fā)布《數(shù)字青島20
» 關(guān)于印發(fā)《青海省支持大數(shù)據(jù)產(chǎn)業(yè)發(fā)展政策措
» 全屋無主燈智能化規(guī)范
» 微波雷達傳感技術(shù)室內(nèi)照明應(yīng)用規(guī)范
» 人工智能研發(fā)運營體系(ML0ps)實踐指
» 四驅(qū)四轉(zhuǎn)移動機器人運動模型及應(yīng)用分析
» 國內(nèi)細(xì)分賽道企業(yè)在 AIGC 各應(yīng)用場景
» 國內(nèi)科技大廠布局生成式 AI,未來有望借
» AIGC領(lǐng)域相關(guān)初創(chuàng)公司及業(yè)務(wù)場景梳理
» ChatGPT 以 GPT+RLHF 模
» AIGC提升文字 圖片滲透率,視頻 直播
» AI商業(yè)化空間前景廣闊應(yīng)用場景豐富
» AI 內(nèi)容創(chuàng)作成本大幅降低且耗時更短 優(yōu)
 
== 機器人推薦 ==
 
迎賓講解服務(wù)機器人

服務(wù)機器人(迎賓、講解、導(dǎo)診...)

智能消毒機器人

智能消毒機器人

機器人底盤

機器人底盤

 

商用機器人  Disinfection Robot   展廳機器人  智能垃圾站  輪式機器人底盤  迎賓機器人  移動機器人底盤  講解機器人  紫外線消毒機器人  大屏機器人  霧化消毒機器人  服務(wù)機器人底盤  智能送餐機器人  霧化消毒機  機器人OEM代工廠  消毒機器人排名  智能配送機器人  圖書館機器人  導(dǎo)引機器人  移動消毒機器人  導(dǎo)診機器人  迎賓接待機器人  前臺機器人  導(dǎo)覽機器人  酒店送物機器人  云跡科技潤機器人  云跡酒店機器人  智能導(dǎo)診機器人 
版權(quán)所有 © 創(chuàng)澤智能機器人集團股份有限公司     中國運營中心:北京·清華科技園九號樓5層     中國生產(chǎn)中心:山東日照太原路71號
銷售1:4006-935-088    銷售2:4006-937-088   客服電話: 4008-128-728

舞钢市| 邛崃市| 麻阳| 会东县| 江北区| 石阡县| 精河县| 靖江市| 德钦县| 稻城县| 延寿县| 涡阳县| 桑植县| 湘乡市| 平凉市| 黎城县| 石台县| 长海县| 安多县| 石嘴山市| 方正县| 丰顺县| 博爱县| 元江| 巍山| 梅河口市| 新巴尔虎左旗| 五峰| 东平县| 德兴市| 理塘县| 尖扎县| 贡山| 栾川县| 承德市| 绵阳市| 保定市| 克什克腾旗| 晋州市| 阜平县| 华阴市|